

EncodersIineales y rotativos

gama estándar

Tecnología

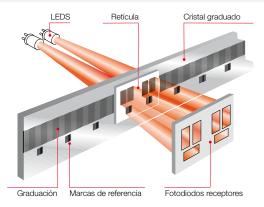
Estos encoders miden la posición de los ejes directamente, sin ningún elemento mecánico intermedio. Los errores producidos en la mecánica de la máquina se evitan porque el encoder está unido a la guía de la máquina y envía el dato real del desplazamiento al controlador. Algunas de las fuentes de error potenciales, como las producidas por el comportamiento termal de la máquina o los errores de paso del husillo, pueden ser minimizadas con el uso de los encoders.

Metodología de medición

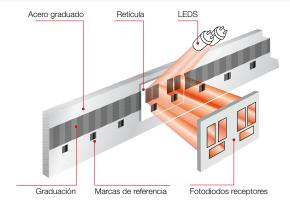
Fagor Automation utiliza dos métodos de medición en sus encoders incrementales:

- Cristal graduado: Para encoders lineales hasta 3 040 mm de curso de medida se utiliza el método de transmisión óptica. El haz de luz de los LED atraviesa el cristal grabado y la retícula antes de alcanzar los fotodiodos receptores. El período de las señales eléctricas generadas es igual al paso de grabado.
- Acero graduado: Para encoders lineales superiores a 3 040 mm de curso de medida se utiliza el principio de autoimagen por medio de iluminación con luz difusa, reflejada sobre la regla de acero graduado. El sistema de lectura está constituido por un LED, como fuente de iluminación de la regla, una red que forma la imagen y un elemento fotodetector monolítico situado en el plano de la imagen, especialmente diseñado y patentado por Fagor Automation.

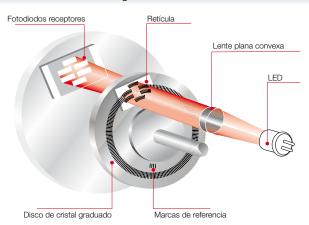
Tipología de encoders incrementales

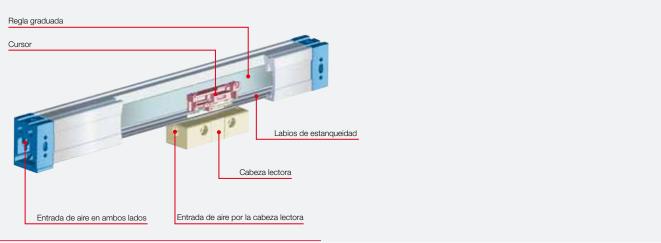

- Encoder lineal: Apropiados para aplicaciones en fresadoras, mandrinadoras, tornos y rectificadoras con velocidades de desplazamiento de hasta 120 m/min y niveles de vibraciones de hasta 10 g.
- Encoder Rotativo: Se emplean como sensores de medición para movimientos giratorios, velocidad angular y también en movimientos lineales, cuando son usados en conjunto con dispositivos mecánicos como pueden ser los husillos. Se utilizan en Máquinas-Herramienta, para el mecanizado de madera, robots, manipuladores, etc.

El diseño cerrado

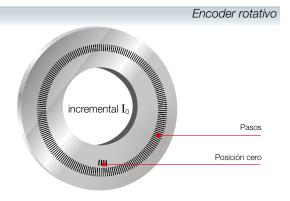

El diseño cerrado protege la regla graduada mediante un perfil de aluminio. Los labios de estanqueidad la salvaguardan del polvo y la proyección de líquidos a medida que el captador se desplaza a lo largo del perfil. La cabeza lectora y la regla graduada forman un tándem equilibrado que permite transmitir el movimiento de la máquina y captar su posición de forma precisa. El desplazamiento del captador sobre la regla graduada se realiza con baja fricción.

Las opciones de entrada de aire por los extremos del encoder y por la cabeza lectora aumentan el grado de protección frente al polvo y líquidos.


Encoder lineal de cristal graduado



Encoder lineal de acero graduado



Encoder rotativo de cristal graduado

Las señales de referencia (I₀)

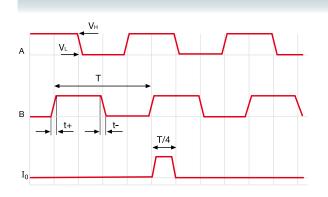
Una señal de referencia consiste en un grabado especial que al ser recorrida por el sistema de medición provoca una señal en forma de pulso. Las señales de referencia se utilizan para restablecer la posición de cero máquina y especialmente, para evitar que surjan errores debido al desplazamiento accidental de los ejes de la máquina mientras haya estado desconectado el controlador al que están conectados.

Los encoders de Fagor Automation disponen de señales de referencia ${\bf I}_0$ en dos versiones:

• Incrementales: La señal de referencia obtenida está sincronizada con las señales de contaje, para garantizar la perfecta repetitividad de la medida.

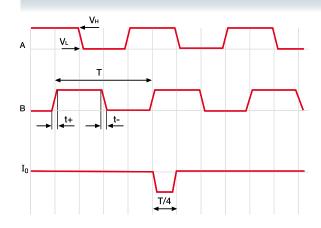
Lineales: una cada 50 mm de recorrido. Rotativos: una señal por cada vuelta.

• Codificadas: En los encoders lineales, cada señal de referencia codificada está separada de la siguiente señal por una distancia distinta, según una función matemática definida. El valor de posición se restablece atravesando dos señales de referencia consecutivas. Con estas señales, el desplazamiento que es necesario realizar para conocer la posición real es siempre muy pequeño, lo que evita la pérdida de tiempos muertos en el restablecimiento de la posición de cero máquina.


señales eléctricas de salida

Son señales complementarias de acuerdo a la norma EIA Standard RS-422. Esta característica junto con una terminación de línea de 120 Ω , las señales complementarias entrelazadas y un apantallamiento global, aportan una mayor inmunidad a ruidos electromagnéticos provocados por el entorno en el que tienen que convivir.

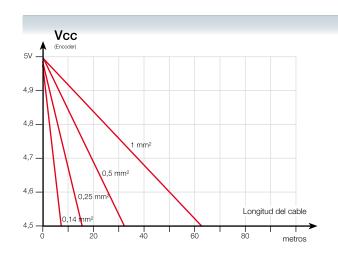
Características

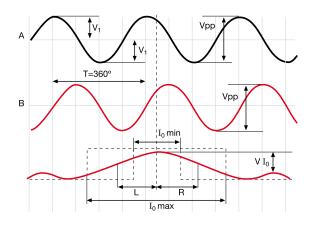

Señales	A, /A, B, /B, $I_{0,}/I_{0}$
Nivel de señal	$V_H \ge 2,5 V$ I _H = 20 mA $V_L \le 0,5 V$ I _L = 20 mA con 1 m de cable
Referencia I ₀ de 90°	Sincronizada con A y B
Tiempo de conmutación	t+/t-< 30ns Con 1 m de cable
Periodo T	según modelo
Máx. longitud de cable	50 metros
Impedancia de carga	Z_0 = 120 Ω entre diferenciales

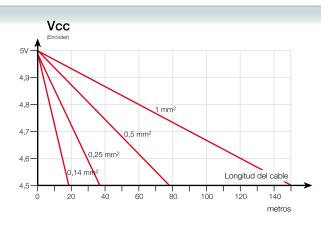
I ☐ TTL No diferenciales

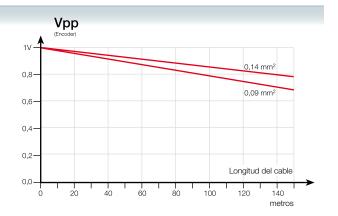
Características

Señales	A, B, / I ₀
Nivel de Señal A, B, I_0	$V_{H} \geq 3,5 \text{ V I}_{H} = 4 \text{ mA}$ $V_{L} \leq 0,4 \text{ V I}_{L} = 4 \text{ mA}$ $con 1 \text{ m de cable}$
Referencia I ₀ de 90°	Sincronizada con A y B
Tiempo de conmutación	t+/t-< 30ns con 1 m de cable
Periodo T	según modelo
Máx. longitud de cable	20 metros


Pérdidas de tensión en el cable provocadas por el consumo del encoder


La alimentación requerida para un encoder TTL debe ser 5V±5%. Mediante una expresión sencilla se puede ver cuál debería ser la longitud máxima del cable en función de la sección de los cables de alimentación:


$L_{max} = (V_{CC}-4,5)*500 / (Z_{CABLE/Km}*I_{MAX})$


Ejemplo

$V_{cc} = 5V$, IMAX	=	0,2 Amp	(Con carga de 120 Ω)
Z (1 mm ²)	=	16,6 Ω/Km	(L _{max} = 75 m)
Z (0,5 mm ²)	=	32 Ω/Km	(L _{max} = 39 m)
Z (0,25 mm ²)	=	66 Ω/Km	(L _{max} = 19 m)
Z (0,14 mm ²)	=	132 Ω/Km	(L _{max} = 9 m)

↑ 1 Vpp diferenciales

Son señales senoidales complementarias cuyo valor diferencial entre ellas es 1 Vpp centrado sobre $V_{\text{CC}2}$. Esta característica junto con una terminación de línea de 120 Ω , las señales complementarias entrelazadas y un apantallamiento global, aportan una mayor inmunidad a ruidos electromagnéticos provocados por el entorno en el que tienen que convivir.

Características

Señales	A, /A, B, /B, $I_{0,}/I_{0}$
V _{App}	1 V +20%, -40%
V _{Bpp}	1 V +20%, -40%
DC offset	$2,5 \text{ V} \pm 0,5 \text{ V}$
Período de señal	según modelo
Máx. longitud de cable	150 metros
A, B centrado: $ V_1-V_2 $ / 2 V_{pp}	≤0,065
Relación A&B: V _{App} / V _{Bpp}	0,8 ÷ 1,25
Desfase A&B:	90° ± 10°
Amplitud I ₀ : V _{I0}	0,2 ÷ 0,8 V
Anchura I ₀ : L+R	I ₀ _min: 180°
	I ₀ _typ: 360°
	I ₀ _max: 540°
Sincronismo I ₀ : L, R	180° ± 90°

Pérdidas de tensión en el cable provocadas por el consumo del encoder

La alimentación requerida para un encoder 1 Vpp debe ser 5V \pm 10%. Mediante una expresión sencilla se puede ver cuál debería ser la longitud máxima del cable en función de la sección de los cables de alimentación:

 $L_{max} = (V_{CC}-4,5)*500 / (Z_{CABLE/Km}*I_{MAX})$

Ejemplo

Vcc	=	5V, IMAX= 0,	5V, IMAX= 0,1 Amp	
Z (1 mm ²)	=	16,6 Ω/Km	(L _{max} = 150 m)	
Z (0,5 mm ²)	=	32 Ω/Km	(L _{max} = 78 m)	
Z (0,25 mm ²)	=	66 Ω/Km	(L _{max} = 37 m)	
Z (0,14 mm ²)	=	132 Ω/ Km	(L _{max} = 18 m)	

Atenuación de las señales de 1 Vpp, originada por la sección de los cables

Además de la atenuación originada por la frecuencia de trabajo, existe otra atenuación en las señales originada por la sección del cable que se conecta al encoder.

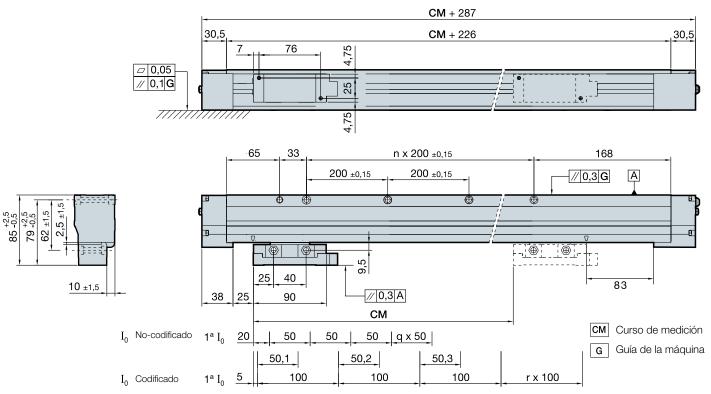
serie F

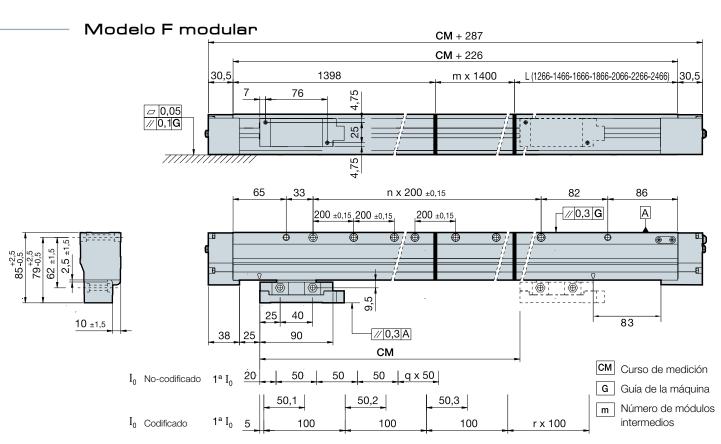
LINEALES

Características generales

Medición	Mediante regla de acero inoxidable, de 100 µm de paso de rayado
Precisión del fleje	± 5 μm
Velocidad máxima	120 m/min.
Vibración máxima	10 g
Fuerza de desplazamiento	< 5 N
Temperatura ambiente de trabajo	0 °C50 °C
Temperatura de almacenamiento	-20 °C70 °C
Peso	1,50 kg + 4 kg/m
Humedad relativa	2080%
Protección	IP 53 (estándar) IP 64 (DIN 40050) mediante la presurización de los encoders lineales a 0.8 ± 0.2 bar
Cabeza lectora	Con conector incorporado

Especialmente diseñado para su aplicación en máquinas estándar de hasta 30 metros de curso de medición. Con referencias de máquina I_0 cada 50 mm o codificadas, y conector incorporado en la cabeza lectora. El paso de la graduación del fleje es de 0,1 mm. Los cursos de medición superiores a 4040 mm se consiguen mediante módulos.


Cursos de medición en milímetros


 Cursos de medición a partir de 440 mm hasta 30 m en incrementos de 200 mm. Para longitudes superiores, consultar a Fagor Automation.

Características específicas				
	FT FOT	FX FOX	FP FOP	
Resolución	5 µm	1 µm	Hasta 0,1 µm	
Marcas de referencia $I_{\text{\scriptsize 0}}$	FT, FX, FP: cada 50 mm FOT, FOX, FOP: I_{0} codificado			
Señales de salida		L□ TTL diferencial	\sim 1 Vpp	
Periodo T de señales de salida	20 µm	4 μm	100 μm	
Frecuencia límite	100 kHz	500 kHz	20 kHz	
Longitud de cable permitida	20 m	50 m	150 m	
Tensión de alimentación	5V ± 5%,100	5V±10%, <100 mA (sin carga)		

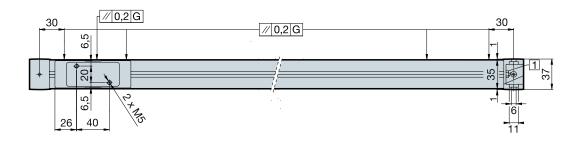
Dimensiones en mm

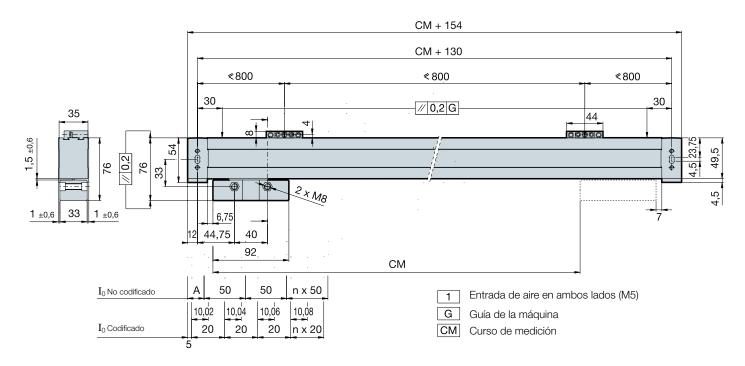
Identificación para pedidos			
Ejemplo Encoder Incr	remental : FX - 36		
F		X	36
Tipo de perfil:	Tipo de marca de referencia I ₀ :	Tipo de señal:	Código de longitud para pedidos:
F: para espacios largos	Espacio vacío: Incremental, una marca cada 50 mm O: Marcas codificadas	 T: TTL de resolución 5 μm X: TTL diferencial de resolución 1 μm P: Senoidal de 1 Vpp 	En el ejemplo (36) = 3640 mm

serie C

LINEALES

Características generales


Cai acter i	Bulcas gerier ales		
Medición	Mediante regla de cristal graduado, de 20 µm de paso de rayado		
Velocidad máxima	60 m/min.		
Vibración máxima	3 g		
Fuerza de desplazamiento	< 5 N		
Temperatura ambiente de trabajo	0 °C50 °C		
Temperatura de almacenamiento	-20 °C70 °C		
Peso	1,2 kg + 2,5 kg/m		
Humedad relativa	2080%		
Protección	IP 53 (estándar) IP 64 (DIN 40050) mediante la presurización de los encoders lineales a 0.8 ± 0.2 bar		
Cabeza lectora	Con conector incorporado		


Especialmente diseñado para su aplicación en máquinas estándar de hasta 3040 mm de curso de medición. Con referencias de máquina $I_{\rm 0}$ cada 50 mm o codificadas, y conector incorporado en la cabeza lectora.

Cursos de medición en milímetros

220 • 270 • 320 • 370 • 420 • 470 • 520 • 620 • 720 • 770 820 • 920 • 1020 • 1140 • 1240 • 1340 • 1440 • 1540 1640 • 1740 • 1840 • 1940 • 2040 • 2240 • 2440 • 2640 2840 • 3040

Características específicas				
	CT COT	COX	CP COP	
Precisión	± 10 μm ± 5 μm			
Resolución	5 µm	1 µm	Hasta 0,1 µm	
$\hbox{Marcas de referencia}\ I_0$	CT, CX, CP: cada 50 mm de recorrido COT, COX, COP: I_0 codificado			
Señales de salida		L□ TTL diferencial	\sim 1 Vpp	
Periodo T de señales de salida	20 µm	4 μm	20 µm	
Frecuencia límite	50 kHz	250 kHz	50 kHz	
Longitud de cable permitida	20 m	50 m	150 m	
Tensión de alimentación	5V ± 5%,100 mA (sin carga) 5V ±10%, <100 m (sin carga)			

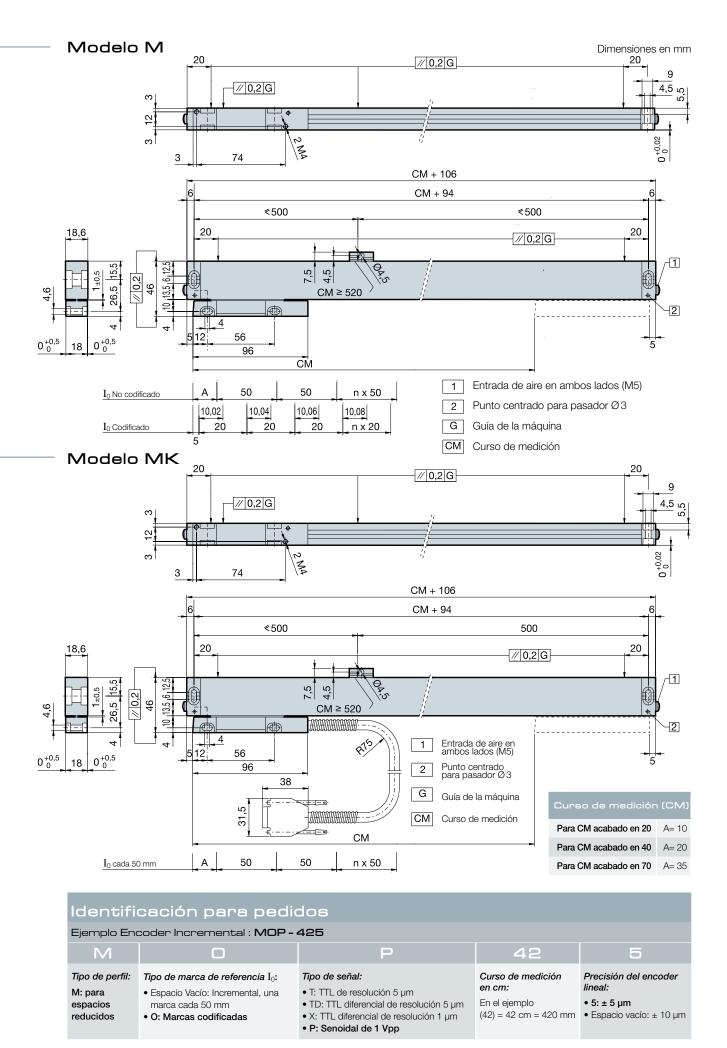
Curso de medición (CM)		
Para CM acabado en 20	A= 10	
Para CM acabado en 40	A= 20	
Para CM acabado en 70	A= 35	

Identificación para pedidos				
Ejemplo Encoder Incremental : COP - 425				
С		Р	42	5
Tipo de perfil: C: para espacios anchos	Tipo de marca de referencia I ₀ : • Espacio vacío: Incremental, una marca cada 50 mm • O: Marcas codificadas	Tipo de señal: • T: TTL de resolución 5 μm • X: TTL diferencial de resolución 1 μm • P: Senoidal de 1 Vpp	Curso de medición en cm: En el ejemplo (42) = 42 cm = 420 mm	Precisión del encoder lineal: • 5: ± 5 μm • Espacio vacío: ± 10 μm

serie M

LINEALES

Características generales Mediante regla de cristal graduado, de 20 µm de paso de rayado Medición Velocidad máxima Vibración máxima 3 g Fuerza de < 5 N desplazamiento Temperatura 0 °C...50 °C ambiente de trabajo Temperatura de -20 °C...70 °C almacenamiento 0,58 kg + 0,6 kg/mHumedad relativa 20...80% IP 53 (estándar) IP 64 (DIN 40050) mediante la presurización de los encoders lineales a 0,8 ± 0,2 bar Protección Con conector incorporado (excepto MKT y MKX) Cabeza lectora


Especialmente diseñado para su aplicación en máquinas estándar de hasta 1540 mm de curso de medición. Con referencias de máquina I_0 cada 50 mm o codificadas, y conector incorporado en la cabeza lectora (excepto serie MK cuya cabeza lectora incluye cable de 3 metros).

Cursos de medición en milímetros

40 (*) • 70 • 120 • 140 • 170 • 220 • 270 • 320 • 370 420 • 470 • 520 • 620 • 720 • 770 • 820 • 920 • 1020 1140 • 1240 • 1340 • 1440 • 1540

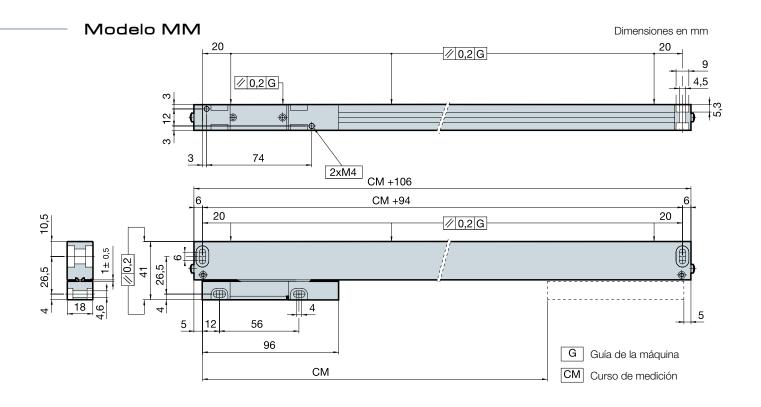
(*) En modelos MT y MX.

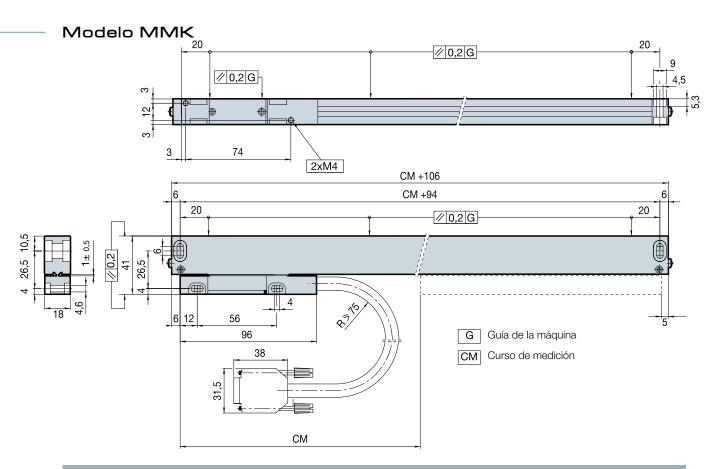
Características específicas							
	MT MOT	MTD	MKT	MX MOX	MKX	MP MOP	
Precisión		± 10 μm		± 5 μm	± 10 μm	± 5 μm	
Resolución		5 μm		1,	ım	Hasta 0,1 µm	
$\mbox{Marcas de referencia} \ I_0$	MKT y MKX: I_0 cada 50 mm MT, MTD, MX y MP: I_0 cada 50 mm MOT, MOX y MOP: I_0 codificado						
Señales de salida	⊔⊓ TTL		⊔⊓ ∏L	L⊓ πL	diferencial	\sim 1 Vpp	
Periodo T de señales de salida		20 µm		4 μm		20 µm	
Frecuencia límite		50 kHz					
Longitud de cable permitida	20 m	50 m	20 m	50	m	150 m	
Tensión de alimentación		5V ±10%, <100 mA (sin carga)					

serie MM

LINEALES

Características generales Mediante regla de cristal graduado, de 20 µm de paso de rayado Medición Velocidad máxima 60 m/min. Vibración máxima 3 g Fuerza de < 5 N desplazamiento Temperatura 0 °C...50 °C ambiente de trabajo Temperatura de -20 °C...70 °C almacenamiento 0,58 kg + 0,5 kg/mHumedad relativa 20...80% Protección IP 53 (estándar) IP64 (DIN40050) mediante la presurización de los encoders lineales a 0,8 ± 0,2 bar Con conector incorporado (excepto MMKT y MMKX) Cabeza lectora


Especialmente diseñado para su aplicación en máquinas estándar de hasta 520 mm de curso de medición. Con referencias de máquina I_0 cada 50 mm y conector incorporado en la cabeza lectora (excepto serie MMK cuya cabeza lectora incluye cable de 3 metros). El perfil de pequeñas dimensiones, 5 mm más bajo que la serie M, permite su instalación en espacios muy reducidos.


Cursos de medición en milímetros

40 (*) • 70 (*) • 120 • 140 • 170 • 220 • 270 • 320 • 370 420 • 470 • 520

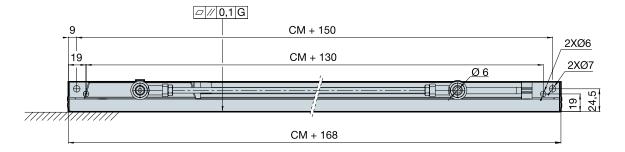
(*) En modelos MMT y MMX.

Características específicas							
	MMT	MMKT	MMX	MMKX	MMP		
Precisión	± 10) µm	± 5 μm	± 10 μm	± 5 μm		
Resolución	5 µ	um	1 µm		0,1 µm		
$\hbox{Marcas de referencia}\ I_0$	$ m I_0$ cada 50 mm						
Señales de salida	П	TTL	L∏TTL diferencial		\sim 1 Vpp		
Periodo T de señales de salida	20	μm	4 μm		20 μm		
Frecuencia límite	50	kHz	250 kHz		50 kHz		
Longitud de cable permitida	20	m	50 m		150 m		
Tensión de alimentación		5V ±10%, <100 mA (sin carga)					

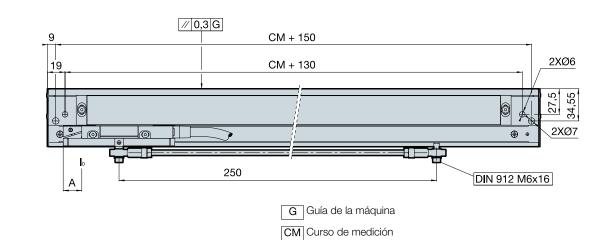
Identificación para pedidos								
Ejemplo Encoder Incremental : MMT-27								
MM	Т	27						
Tipo de perfil: MM: para espacios muy reducidos	 Tipo de señal: T: TTL de resolución 5 μm X: TTL diferencial de resolución 1 μm P: Senoidal de 1 Vpp 	Curso de medición en cm: En el ejemplo (27) = 27 cm = 270 mm						

serie MTD-P-2R

LINEALES


Características generales Mediante regla de cristal graduado, de 20 µm de paso de rayado Medición Velocidad máxima Vibración máxima 3 g Fuerza de < 5 N desplazamiento Temperatura 0 °C...50 °C ambiente de trabajo Temperatura de -20 °C...70 °C almacenamiento 0,58 kg + 2,43 kg/mHumedad relativa 20...80% IP 53 (estándar) IP64 (DIN40050) mediante la presurización de los encoders lineales a 0,8 \pm 0,2 bar Protección Cabeza lectora Con conector incorporado

Especialmente diseñado para su aplicación en máquinas plegadoras de hasta 1540 mm de curso de medición. El encoder lineal se suministra con una rótula para el desplazamiento de la cabeza lectora y un soporte de aluminio que se monta directamente sobre la máquina.


Cursos de medición en milímetros

40 • 70 • 120 • 140 • 170 • 220 • 270 • 320 • 370 • 420 470 • 520 • 620 • 720 • 770 • 820 • 920 • 1020 • 1140 1240 • 1340 • 1440 • 1540

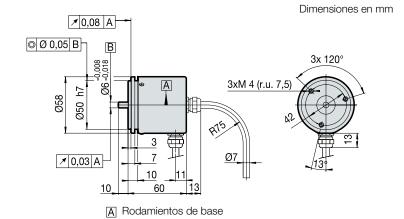
Características específicas							
	MTD-P-2R						
Precisión	± 10 μm						
Resolución	5 μm						
$\hbox{Marcas de referencia}\ I_0$	Dos I_0 en los extremos						
Señales de salida	L□TTL diferencial						
Periodo T de señales de salida	20 μm						
Frecuencia límite	50 kHz						
Longitud de cable permitida	50 m						
Tensión de alimentación	5V ± 5%,100 mA (sin carga)						

Curso de medición (CM)						
Para CM acabado en 20	A= 10					
Para CM acabado en 70	A= 35					

Identificación para pedidos									
Ejemplo Encoder Incremental : MTD-77 P-2R									
M	TD	77	P-2R						
Tipo de perfil:	Tipo de señal:	Curso de medición en cm:	Marca de referencia I_0 :						
M: para espacios reducidos	TD: TTL diferencial de resolución 5 μm	En el ejemplo (77) = 77 cm = 770 mm	Dos $I_{\rm 0}$ en los extremos						

serie H, S

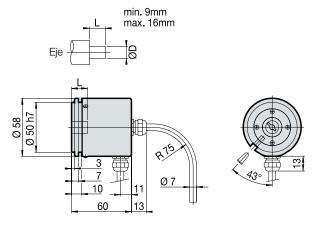
ROTATIVOS



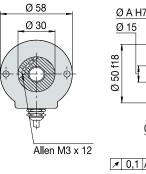
Características generales								
	S	SP	H/HA	HP				
Medición	Mediante disco graduado							
Precisión		± 1/10	de paso					
Velocidad máxima		1200	0 rpm					
Vibración		100 m/seg ² (10 ÷ 2000 Hz)					
Impacto		300 m/seg ²	2 (11 m/seg)					
Momento de inercia		16 g	r/cm ²					
Par de giro	0,003 Nm (30 gr/cm) máx. a 20 °C							
Tipo de eje	Eje Sali	ente	Eje Hu	eco				
Carga máxima en el eje	Axial: Radial:		-					
Peso		0,3	kg					
Características ambientales:								
Temperatura funcionamiento		0 °C	+70 °C					
Temperatura almacenamiento		-30 °C.	+80 °C					
Humedad relativa		98% sin o	condensar					
Protección	IP 64 (DIN	40050). En mod	lelos S y SP: opcio	nal IP 66				
Fuente de luz		IRED (Diodo en	nisor infrarrojos)					
Frecuencia máxima		200	KHz					
Señal de referencia $I_{\rm 0}$	Una señal de referencia por vuelta del encoder							
Tensión de alimentación	5 V 5 V 5 V 5 V 5 V 5 V ± 5% (TTL) ± 10% (1 Vpp) ± 5% (TTL) ± 10% (1 Vpp							
Consumo	70 mA típico, 100 mA máx. (sin carga)							
Señales de salida	LTTL diferencial \sim 1 Vpp LTTL diferencial \sim 1 Vp							
Longitud de cable permitida	50 m 150 m 50 m 150 m							

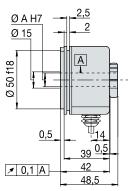
Núm	ero de	e impu	ılsos v	uelta
S	SP	Н	НА	HP
100	-	100	_	_
200	-	200	_	_
250	-	250	_	_
400	-	400	_	_
500	-	500	_	_
600	-	600	_	_
635	-	635	_	_
1 000	1 000	1 000	_	1 000
1 024	1 024	1024	1 024	1 024
1 250	1 250	1 250	1 800	1 250
1 270	1 270	1270	2 000	1 270
1 500	1 500	1 500	2 048	1 500
2000	2000	2000	2 500	2000
2500	2 500	2500	3 000	2500
3 000	3 000	3000	3 600	3000
-	3 600	-	4 000	-
-	4 320	-	4 096	-
5 000	5 000	-	5 000	-
-	-	-	10 000	-

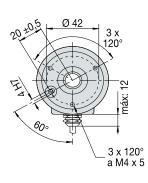
Modelos S, SP



Modelos H, HP


L: Min. 9 mm, max. 16 mm

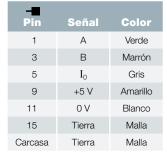

ØD g7 mm 3 4 6 6,35 7 8 9,53

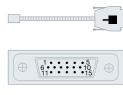


Modelo HA

ldentificación para pedidos - modelos H, HP, S y SP								
Ejemplo	Encoder Rotat	ivo: SP-102 4	I-C5-R	R-12-IP 66				
S	S P 1024 C5 R 12 IP					IP 66		
Modelo:	Tipo de señal	: Nº impulso	s/vuelta:	Tipo de cone	ector:	Salida cable:	Voltaje:	Protección:
• S: Eje sali • H: Eje hue	· · · · · · · · · · · · · · · · · · ·	da	ag 16)	Espacio vac cable sin co C: conector cuerpo CON C5: cable of con conect CONNEI 12	nector en el NNEl 12 le 1m cor	R: Radial Espacio vacío: Axial	Espacio vacío: Alimentación estándar de 5 V 12: Alimentación opcional de 12 V (sólo para señal HTL)	Espacio vacío: Protección estándar (IP 64) IP 66: Protección IP 66
Ident	ificación p	para ped	idos	s – mod	lelo F	HA.		
Ejemplo	Encoder Rotat	ivo: HA - 221	32-2	500				
НА	2	2		1		3	2	2500
En todos los casos	Tipo de abrazadera 1: Abrazadera posterior 2: Abrazadera frontal	Tamaño del eje hueco (ØA): • 1: 10 mm • 2: 12 mm	• 1: A, E	s de $salida:$ B, ${ m I}_0$ más sus lementadas	1: Cable2: Cone radial in3: Cable	e radial (2 m) ector CONNEI 12 ecroporado le radial (1 m) con or CONNEI 12	Tensión de alimentación: 1: Push-Pull (11-30 V) 2: RS-422 (5 V)	Nº impulsos/vuelta: (Ver tabla pag 16)

accesorios

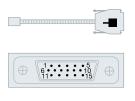

Cables de conexión


Conexión a FAGOR

EC...T-D

Longitudes: 1, 3, 6, 9 y 12 metros

Conector SUB D 15 HD (Pin macho -1)



EC...P-D

Longitudes: 1, 3, 6, 9 y 12 metros

Conector SUB D 15 HD (Pin macho -

_		
Pin	Señal	Color
1	А	Verde
2	/A	Amarillo
3	В	Azul
4	/B	Rojo
5	I_{O}	Gris
6	I_0	Rosa
9	+5 V	Marrón
11	0 V	Blanco
15	Tierra	Malla
Carcasa	Tierra	Malla

Acoplamientos para encoders rotativos

Para encoders de eje saliente

Características específicas							
	AF	AC	AL				
Máxima desalineación radial admisible	2 mm	1 mm	0,2 mm				
Máxima desalineación angular admisible	8°	5°	4°				
Máxima desalineación axial admisible	± 1,5 mm	_	± 0,2 mm				
Máximo par transmisible	2 Nm	1,7 Nm	0,9 Nm				
Rigidez en torsión	1,7 Nm/rad.	50 Nm/rad.	150 Nm/rad.				
Máxima velocidad de rotación 12 000 rpm							

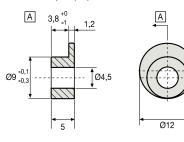
casquillos AH

Casquillos de acoplamiento para encoders de eje hueco

Los encoders de eje hueco van acompañados de un casquillo estándar de 6 mm de diámetro (Ø6).

Pueden suministrarse también de los siguientes diámetros:

Ø3, Ø4, Ø6, Ø7, Ø8 y Ø10 mm, 1/4" y 3/8".



arandela AD

Arandela para sujeción del encoder rotativo modelos H, HP, S, SP.

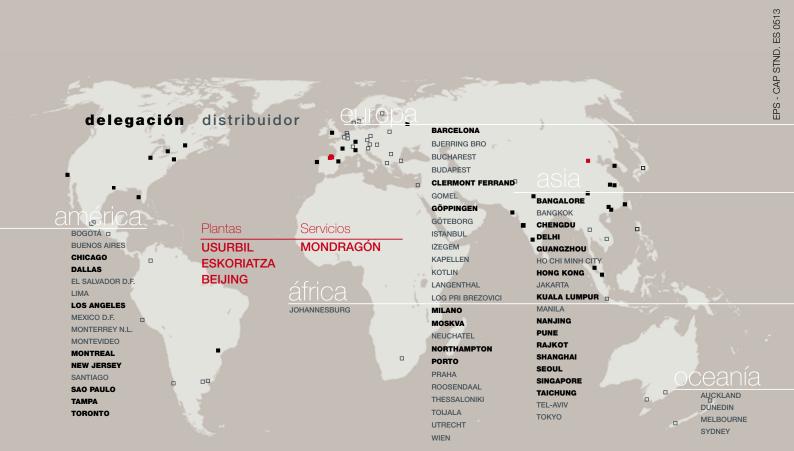
FAGOR AUTOMATION

Fagor Automation, S. Coop.

B° San Andrés, 19

E-20500 Arrasate - Mondragón

SPAIN


Tel.: +34 943 719 200 Fax.: +34 943 791 712 E-mail: info@fagorautomation.es

Fagor Automation está acreditado por el Certificado de Empresa ISO 9001 y el marcado **C €** para todos sus productos.

www.fagorautomation.com

worldwide automation