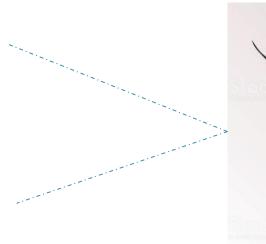


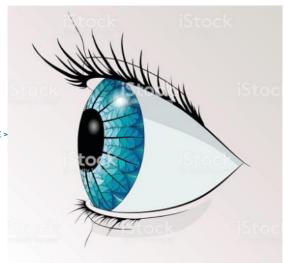
Transceptores Ópticos y sus Características Técnicas.

Ing. Daniel Torrabadella formacion.dotcom@gmail.com

Transceptores Ópticos

• Los transceptores presentan una «**interfaz**» que se vincula con la fibra óptica a través de un conector. En el diagrama siguiente se detallan en color los elementos bajo estudio en sentido unidireccional (S=Source, R=Reception).



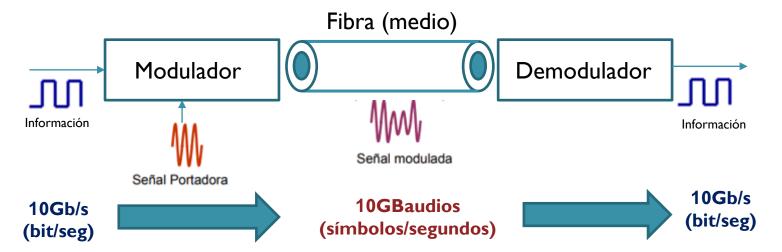

Módulo Transceptor Óptico.

- Cada uno de estos módulos, cubren todo el abanico de aplicaciones ópticas que, con distintos **Código o Números de Partes**, se hace una combinatoria de los principales parámetros que se listan a continuación:
 - Frecuencia / Longitud de Onda Señal Óptica (Ventana de Operación).
 - Tipo de Fibra a utilizar (monomodo, multimodo).
 - Modulación de información utilizada.
 - SingleChannel y MultiChannel.
 - Velocidades y Tipos de Interfaces soportadas (SDH, Ethernet, FC, etc.).
 - Alcance de las interfaces (Potencias y Dispersiones).

Transceptores Ópticos – Modulación Interfaz Gris

CePETel
Sindicato de los Profesionales

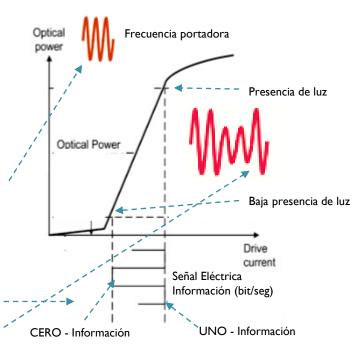
de las Telecomunicaciones


SECRETARÍA TÉCNICA

DOTCOM FORMACIÓN

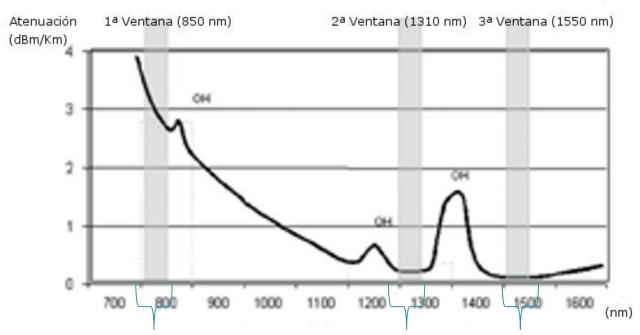
Modulación en Interfaces Grises

Este tipo de interfaz utilizan un esquema de "Detección Directa - Modulación por Intensidad"* (DD-IM) digital, donde un "Uno" de información eléctrica se traduce como presencia de luz y un "Cero" de información eléctrica se traduce como ausencia (RZ – Retorno a cero) o baja presencia (NRZ – No retorno a cero) de luz.



Modulación en interfaces grises

 En la figura , representa la curva de transferencia (señal eléctrica – potencia óptica) de un diodo emisor de luz y la señal de Información.


Siendo:

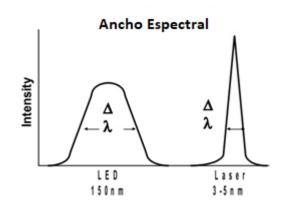
- La frecuencia o longitud de onda infrarroja de un diodo emisor llamada señal portadora.
- El Uno y Cero de información eléctrica (llamada señal moduladora) que se mide en bit/seg (velocidad de información).
- La señal modulada, la resultante del producto de las dos anteriores.

Digital (binary) Laser

Ancho Espectral y Bandas de Trabajo.

El diodo emitirá en cualquier frecuencia dentro de la banda estandarizada

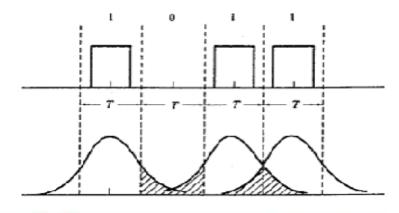
SECRETARÍA TÉCNICA



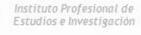
Instituto Profesional de Estudios e Investigación

Ancho Espectral y Bandas de Trabajo.

- Los transmisores utilizados para el transporte de <u>un canal de información</u> se distinguen, según el tipo de fibra (MMF o SMF), en las bandas que se detallan a continuación:
 - Fibras Multimodo -> Diodo Led Económico
 - Primera Ventana, Frecuencia Central 850 nm.
 - Segunda Ventana, Banda O, Frecuencia Central 1310 nm
 - Fibras Monomodo -> Diodo Laser Costoso
 - Segunda Ventana, Banda O, Frecuencia Central 1310 nm
 - Tercera Ventana, Banda C; Frecuencia Central 1550 nm.



Transceptores Ópticos – SingleChannel


- Con este tipo de Modulación (1 bit / símbolo), sumado al ancho espectral del diodo de Tx y la dispersión de la fibra, a medida que aumenta la velocidad de la información el alcance comienza a reducirse por el aumento de la Interferencia Inter Símbolos (ISI) que se produce en la recepción debido al ensanchamiento del pulso de la señal:
 - Cromática (CD) y Modo de Polarización (PMD) en fibras Monomodo
 - Modal (MD) en fibras Multimodo

Como resuelvo esta limitación?

Transceptores Ópticos – Single / Multi Channel

SingleChannel

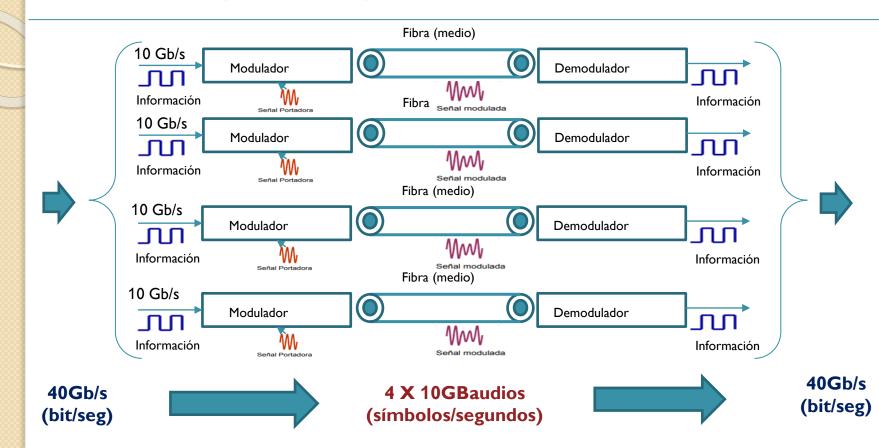
 <u>Fibras Multimodo</u> el umbral de máximo alcance con la modulación de intensidad (DD-IM) es del orden de 10 Gb/s lográndose distancias dentro de un edificio.

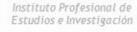
Dispersión Modal (principal factor)

 <u>Fibras Monomodo</u> el umbral de máximo alcance con la modulación de intensidad (DD-IM) es del orden de 40 Gb/s para distancias dentro de una ciudad del orden de las decenas de km.

Dispersión Cromática y DGD (principales factores)

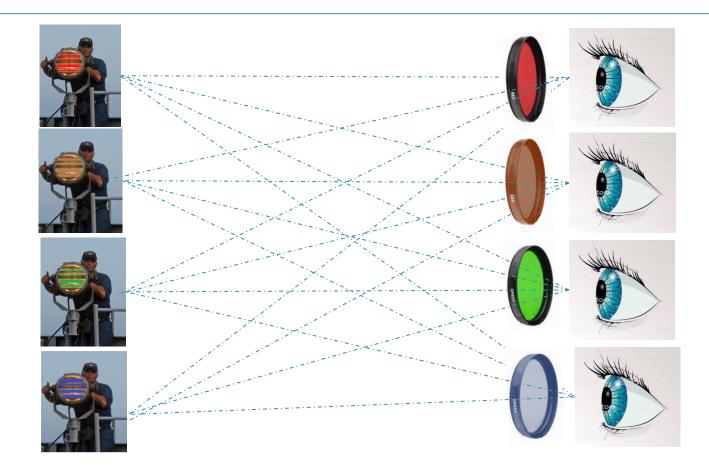
• Pero entonces, ¿Que pasa si aumenta la velocidad y sabemos que hay efectos físicos con este tipo de modulación que nos darían distancia ridículas para enlazar un sistema?.

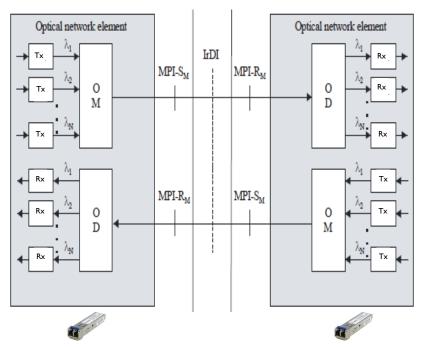

- Para estos casos, cuando es necesario transmitir velocidades por encima de 10 Gb/s en MMF, la "Interfaz Física" (canal de información) se divide <u>físicamente</u> en caminos en paralelo "Channels "- a menor velocidad en distintos pares (Tx-Rx) de pelos de fibra, logrando así el objetivo de reducir la velocidad en cada par de pelos.
- Cada "Channel" de la interfaz tendrá un diodo emisor / receptor, y la velocidad será la velocidad de la "Interfaz" (canal de información) dividido la cantidad de canales.
- La interfaz física de estos transceptores presenta un conector que agrupa una cantidad de pelos de fibras como muestra la figura siguiente.

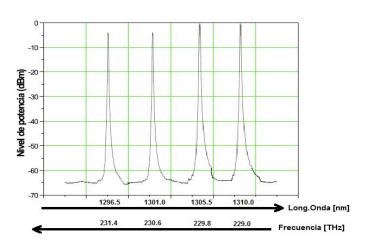


- > 40 Gb/s -> 40GBaseSR4 -> 4 pares de fibras de Tx-Rx -> Cada par Tx-Rx a 10 Gb/s
- > 100Gb/s -> 100GBaseSR10 -> 10 pares de fibras de Tx-Rx -> Cada par Tx-Rx a 10 Gb/s -> 100GBaseSR4 -> 4 pares de fibras de Tx-Rx -> Cada par de Tx-Rx a 25 Gb/s.
- ¿Como se resuelve en este caso el cálculo óptico?, Como si fueran canales independientes a los Gbaudios que corresponda cada canal.

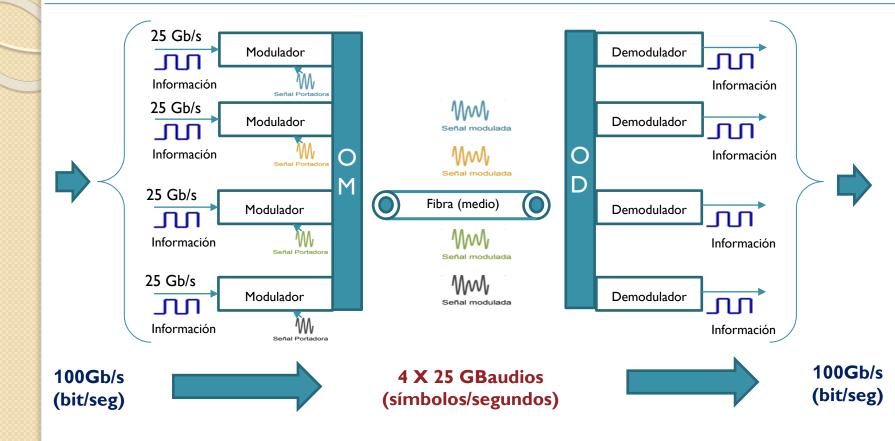
- Cuando es necesario transmitir velocidades por encima de 40 Gb/s en SMF, la interfaz física (canal de Información) se divide en distintas (N) portadoras de frecuencia (o lo que es lo mismo longitudes de onda).
- Cada canal de la interfaz tendrá un diodo emisor / receptor, y la velocidad será la velocidad del canal de información dividido la cantidad de canales teniendo, cada uno de ellos, una frecuencia especifica en el mismo par de pelos de fibra.

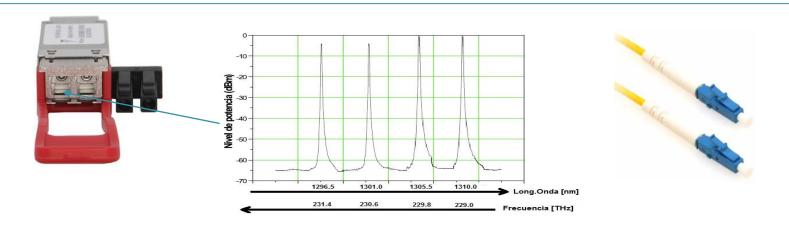






Transceptores Ópticos - Modulación




- OM un Multiplexor Óptico (Optical Multiplexer)
- OD un Demultiplexor Óptico (Optical Demultiplexer)

Las frecuencias utilizadas en interfaces MultiChannel en SMF <u>ya no pueden ser cualquiera de la banda.</u>

Son fijadas por el estándar con la frecuencia central de portadora y la separación entre ellas.

- > 100Gb/s -> 100GBaseLR4 -> 4 portadoras de Tx-Rx -> Cada par Tx-Rx a 25 Gb/s
- ¿Como se resuelve en este caso el cálculo óptico?, Como si fueran canales independientes (portadoras) a los Gbaudios y frecuencia de cada canal de trabajo.

Velocidad de Información y Tipos de Interfaces.

Velocidad de Información	Ethernet (IEEE)	SDH (ITU-T)	OTN (ITU-T)	FC (ANSI)
~1 Gb/s	1000base Sx (MMF) Lx, Ex, Zx (SMF)			1GFC 100-Mx-Sx (MMF) 100-SM-x (SMF)
~2,5 Gb/s		STM-16 I, S, L (SMF)	OTU-1 I, S, L (SMF)	2GFC 200-Mx-Sx (MMF) 200-SM-x (SMF)
~4 Gb/s				4GFC 400-Mx-Sx (MMF) 400-SM-x (SMF)
~8 Gb/s				8GFC 800-Mx-Sx (MMF) 800-SM-x (SMF)
~10 Gb/s	10GBase SR (MMF) LR, ER, ZR (SMF)	STM-64 I, S, L (SMF)	OTU-2/e I, S, L (SMF)	

Cepelel

SECRETARÍA TÉCNICA

Instituto Profesional de Estudios e Investigación

Velocidad de Información y Tipos de Interfaces.

Velocidad de Información	Ethernet (IEEE)	SDH (ITU-T)	OTN (ITU-T)	FC (ANSI)
~16 Gb/s				16GFC 1600-Mx-Sx (MMF) 1600-SM-x (SMF)
~32 Gb/s				32GFC 3200-SN (MMF) 3200-SM (SMF)
~40 Gb/s	40GBase SR4 (MMF) LR4 (SMF)	STM-256 I, S, L (SMF)	OTU-3 I, S, L (SMF)	
~64 Gb/s				64GFC 6400-GFC-SW (MMF) 6400-GFC-LW (SMF)
~100 Gb/s	100GBase SR4, SR10 (MMF) LR4, ER4 (SMF)		OTU-4 (SMF)	128GFC 12800-GFC-SW4 (MMF) 12800-GFC-LW-x (SMF)

Certiel

SECRETARÍA TÉCNICA

Instituto Profesional de Estudios e Investigación

Resumen Interfaces – Single / MultiChannel

	Fibra MultiModo		Fibra MonoModo		
	Single Channel	Multi Channel	Single Channel	Multi Channel	
Ethernet	1 a 10 GE	≥ 40GE	1 a 40GE	≥ 100GE	
SDH			STM-1 a STM-256		
OTN			OTU-1 a OTU- 3	≥ OTU-4	
FC	1 a 32GFC	≥ 64GFC	1 a 128GFC	≥ 128GFC	

BREAK !!!

Transceptores Ópticos – Alcance de Interfaces

Alcance de interfaces de UN canal de información en SMF.

Existen dos formas que un transceptor indica el alcance que se puede lograr con un determinado módulo:

A. Distancia del Enlace Óptico.

Es un valor "referencial" que nos indica la distancia (en KM) que puede cubrir ese módulo óptico bajo ciertas premisas de:

- ☐ Tipo de Fibra:
 - ✓ SMF MMF
 - ✓ Atenuación
 - Dispersión Cromática
 - ✓ PDM
- Conectores.
 - ✓ Atenuación Máxima
 - ✓ Cantidad en el enlace

Transceptores Ópticos – Alcance de Interfaces

B. <u>Cálculo del Enlace Óptico.</u>

Hacer un cálculo a partir de los datos estandarizados:

- Potencias del Transmisor. Dependiente del diodo Tx
- Potencias del Receptor.
 Dependiente del diodo Rx
- Tolerancia Dispersión de Modo de Polarización -> Dependiente de la Velocidad de Información
- Tolerancia a la dispersión Cromática.
- Mínima Atenuación Tolerada (Potencias Tx y Rx)
- Máxima Atenuación Tolerada (Potencias Tx y Rx)

El cálculo óptico tiene sentido para enlace con fibra Monomodo

Dependiente del par Tx-Rx.

Transceptores Ópticos – Alcance de Interfaces

Atenuación Soportada.

Tolerancia de la dispersión *.

Potencias de Transmisión.

Dispersión Cromática

Potencias de Recepción.

Dispersión de Modo de Polarización.

- Las especificaciones relativas a la potencia de transmisión, recepción y dispersión, debemos separarlas en dos tipos de interfaces vistas:
 - a) Single Channel
 - b) Multi Channel

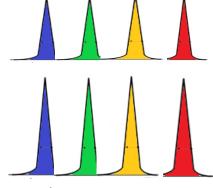
^{*} Interfaces Monomodo, se descarta "Dispersión de Modal".

Transmisor óptico

Potencia de Salida

- La unidad que se utiliza es el dBm
- En interfaces <u>SingleChannel</u> se entregan dos valores de potencia:
 - Potencia de salida mínima (PTxmin)

Potencia de salida máxima (PTxmax)



Transmisor óptico

Potencia de Salida

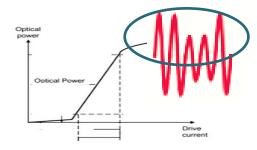
- En interfaces <u>MultiChannel</u> también se entregan dos tipos de potencias:
 - Potencia de salida <u>por</u> canal mínima (PTxmin_channel)

Potencia de salida <u>por</u> canal máxima (PTxmax_channel)

 Se suele entregar también la potencia de salida máxima total (incluye todos los canales):

$$PTx \max_{tot} = PTx \max_{tot} + 10 \log N$$

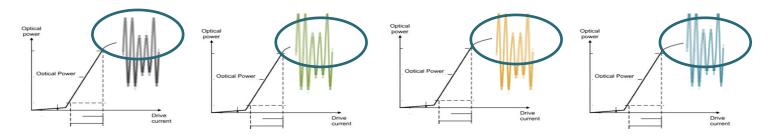
Siendo N la cantidad de canales de la interfaz Multi channel.



Receptor óptico

Potencia Máxima de Entrada

- "Potencia Máxima de Entrada" indica el valor asegurado de la máxima potencia que puede soportar la interfaz del receptor en el punto "R" o "Rm" sin saturar el receptor y cumpliendo:
 - · La tasa de bit errados (BER) definida en la información general del transceptor
 - No provocar un dano permanente en el receptor.
- La unidad que se utiliza en este parámetro es el dBm
- En interfaces <u>SingleChannel</u>, se especifica:
 - Potencia Máxima de Entrada (PRxmax)



Receptor óptico

Potencia Máxima de Entrada

- En una interfaz MultiChannel, al tener mas de un canal, se especifica:
 - Potencia Máxima de Entrada por canal (PRxmax_channel)

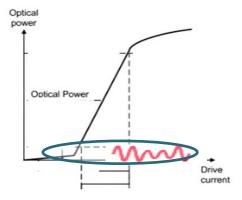
• Se suele entregar también la "Potencia Máxima de entrada media total (PRxmax_total) de la interfaz (incluye todos los canales):

$$PRx \max_{total} = PRx \max_{total} + 10\log N$$

Siendo N la cantidad de canales de la interfaz.

Mínima Sensibilidad

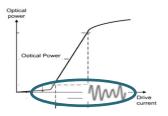
- "Mínima Sensibilidad", es el parámetro que indica el valor asegurado de la mínima potencia (sensibilidad) que debe soportar la interfaz del receptor en el punto "R" o "Rm" cumpliendo:
 - La tasa de bit errados (BER) definida en la información general del transceptor.
 - Sin producir alarmas de la interfaz.
- La unidad que se utiliza en este parámetro es el dBm
- Este valor de sensibilidad es asegurado <u>eliminando todo efecto de dispersión</u> que pueda introducir la fibra.

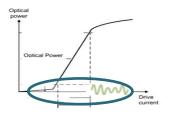


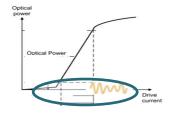
Receptor óptico

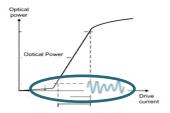
Mínima Sensibilidad

- Si la interfaz es <u>SingleChannel</u>, el valor entregado es:
 - Mínima Sensibilidad (PRxmin).

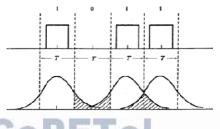


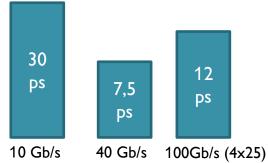





Mínima Sensibilidad

- Si es una interfaz <u>MultiChannel</u> se especifica para cada uno de los canales que la conforman:
 - ∘Potencia Mínima de Entrada por canal» (PRxmin_channel)





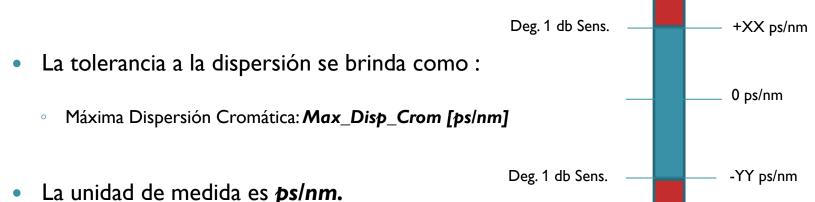
Tolerancia Modo de Polarización

- Se define como el máximo retardo de grupo diferencial (DGD), y es la dispersión de modo de polarización aportada por el medio (fibra) que produce una degradación de 1 db en la sensibilidad del receptor.
- Esta la tolerancia a la dispersión de modo de polarización en la recepción es dependiente del período del "Channel" de la interfaz (típicamente 30% del periodo de la información)
- La unidad de medida es en pseg.

DGD_{max}[ps]

CePETel

SECRETARÍA TÉCNICA


Instituto Profesional de Estudios e Investigación

Conjunto Transmisor - Receptor

Tolerancia a la Dispersión Cromática

 Se define como máxima tolerancia a la dispersión cromática, a aquella dispersión dada en ps/nm aportada por el medio (fibra) que produce una degradación de 1 db en la sensibilidad del receptor.

• El comportamiento del receptor <u>puede no ser lineal</u> en toda la banda de operación (valores positivos y negativos).

Máxima Penalidad de Trayecto óptico

- Este parámetro indica el valor máximo con que puede penalizarse (degradarse) la sensibilidad en el punto "R" o "Rm" de un receptor debido a:
 - Dispersión cromática aportada por el medio (fibra óptica) dentro del rango tolerado por la interfaz en ps/nm.
 - Dispersión de Modo de Polarización aportada por el medio (fibra óptica) dentro del rango tolerado por la interfaz en pseg.

Max_PathPenalty
PRx min

• Este parámetro indica cuanto es lo máximo que se puede empeorar la sensibilidad de un receptor por todos los efectos de la dispersión.

Conjunto Transmisor - Receptor

Mínima Atenuación Tolerada

- Este parámetro indica la mínima atenuación "asegurada" que puede tener un enlace óptico sin dañar el receptor a partir de los siguientes parámetros:
 - Potencia máxima transmitida (PTxmax / PTxmax_channel).
 - Máxima Potencia de entrada de recepción (PRxmax / PRxmax_channel)
- Al ser este parámetro de atenuación, su unidad es en dB.
 - Interfaz Single Channel.

$$MinAtt = PTx_{max} - PRx_{max}$$

Interfaz Multi Channel.

$$MinAtt$$
channel = PTx max_channel - PRx max_channel

Máxima Atenuación Tolerada

- Este parámetro indica la máxima atenuación "asegurada" que puede entregar un enlace óptico para que el sistema funcione correctamente a partir de los siguientes parámetros:
 - Potencia mínima transmitida
 - (PTxmin / PTxmin_channel).
 - Mínima Sensibilidad de recepción
 - (PRxmin / PRxmin_channel).
 - Máxima penalización del trayecto
 - (Max PathPenalty)
- Al ser este parámetro de atenuación, su unidad es en dB.

Máxima Atenuación Tolerada

PTx max

- Si bien normalmente este parámetro se entrega en la especificación, la misma puede calcularse a partir de los parámetros vistos anteriormente.
 - Interfaz Single Channel.

$$MaxAtt = PTx \min - PRx \min - Max _ Path_{Penalty}$$

Interfaz Multi Channel.

$$MaxAtt_channel = PTx \min_channel - PRx \min_channel - Max_Path_Penalty$$

PTx PT_x min Max PathPenalty PRx min

Ing. Daniel Torrabadella formacion.dotcom@gmail.com